Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust spectral compressive sensing via vanilla gradient descent (2101.08547v4)

Published 21 Jan 2021 in cs.IT and math.IT

Abstract: This paper investigates the recovery of a spectrally sparse signal from its partially revealed noisy entries within the framework of spectral compressive sensing. Nonconvex optimization approaches have recently been proposed based on low-rank Hankel matrix completion and projected gradient descent (PGD). The PGD however involves unknown tuning parameters and its theoretical analysis is available only in the absence of noise. In this paper, we propose a hyperparameter-free, vanilla gradient descent (VGD) algorithm and prove that the VGD enables robust recovery of an $N$-dimensional $K$-spectrally-sparse signal from order $K2 log2N$ number of noisy samples under coherence and other mild conditions. The above sample complexity increases by factor $logN$ as compared with PGD without noise. Numerical simulations are provided that corroborate our analysis and show advantageous performances of VGD.

Summary

We haven't generated a summary for this paper yet.