Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Information-Theoretic Analysis of the Impact of Task Similarity on Meta-Learning (2101.08390v3)

Published 21 Jan 2021 in cs.LG, cs.IT, eess.SP, and math.IT

Abstract: Meta-learning aims at optimizing the hyperparameters of a model class or training algorithm from the observation of data from a number of related tasks. Following the setting of Baxter [1], the tasks are assumed to belong to the same task environment, which is defined by a distribution over the space of tasks and by per-task data distributions. The statistical properties of the task environment thus dictate the similarity of the tasks. The goal of the meta-learner is to ensure that the hyperparameters obtain a small loss when applied for training of a new task sampled from the task environment. The difference between the resulting average loss, known as meta-population loss, and the corresponding empirical loss measured on the available data from related tasks, known as meta-generalization gap, is a measure of the generalization capability of the meta-learner. In this paper, we present novel information-theoretic bounds on the average absolute value of the meta-generalization gap. Unlike prior work [2], our bounds explicitly capture the impact of task relatedness, the number of tasks, and the number of data samples per task on the meta-generalization gap. Task similarity is gauged via the Kullback-Leibler (KL) and Jensen-Shannon (JS) divergences. We illustrate the proposed bounds on the example of ridge regression with meta-learned bias.

Citations (11)

Summary

We haven't generated a summary for this paper yet.