Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Search-Based Testing Framework for Deep Neural Networks of Source Code Embedding (2101.07910v1)

Published 20 Jan 2021 in cs.SE

Abstract: Over the past few years, deep neural networks (DNNs) have been continuously expanding their real-world applications for source code processing tasks across the software engineering domain, e.g., clone detection, code search, comment generation. Although quite a few recent works have been performed on testing of DNNs in the context of image and speech processing, limited progress has been achieved so far on DNN testing in the context of source code processing, that exhibits rather unique characteristics and challenges. In this paper, we propose a search-based testing framework for DNNs of source code embedding and its downstream processing tasks like Code Search. To generate new test inputs, we adopt popular source code refactoring tools to generate the semantically equivalent variants. For more effective testing, we leverage the DNN mutation testing to guide the testing direction. To demonstrate the usefulness of our technique, we perform a large-scale evaluation on popular DNNs of source code processing based on multiple state-of-the-art code embedding methods (i.e., Code2vec, Code2seq and CodeBERT). The testing results show that our generated adversarial samples can on average reduce the performance of these DNNs from 5.41% to 9.58%. Through retraining the DNNs with our generated adversarial samples, the robustness of DNN can improve by 23.05% on average. The evaluation results also show that our adversarial test generation strategy has the least negative impact (median of 3.56%), on the performance of the DNNs for regular test data, compared to the other methods.

Citations (41)

Summary

We haven't generated a summary for this paper yet.