Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-Based Reinforcement Learning for Approximate Optimal Control with Temporal Logic Specifications (2101.07156v2)

Published 18 Jan 2021 in eess.SY and cs.SY

Abstract: In this paper we study the problem of synthesizing optimal control policies for uncertain continuous-time nonlinear systems from syntactically co-safe linear temporal logic (scLTL) formulas. We formulate this problem as a sequence of reach-avoid optimal control sub-problems. We show that the resulting hybrid optimal control policy guarantees the satisfaction of a given scLTL formula by constructing a barrier certificate. Since solving each optimal control problem may be computationally intractable, we take a learning-based approach to approximately solve this sequence of optimal control problems online without requiring full knowledge of the system dynamics. Using Lyapunov-based tools, we develop sufficient conditions under which our approximate solution maintains correctness. Finally, we demonstrate the efficacy of the developed method with a numerical example.

Citations (13)

Summary

We haven't generated a summary for this paper yet.