Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action Recognition (2101.07042v3)

Published 18 Jan 2021 in cs.CV

Abstract: Zero-shot action recognition is the task of recognizingaction classes without visual examples, only with a seman-tic embedding which relates unseen to seen classes. Theproblem can be seen as learning a function which general-izes well to instances of unseen classes without losing dis-crimination between classes. Neural networks can modelthe complex boundaries between visual classes, which ex-plains their success as supervised models. However, inzero-shot learning, these highly specialized class bound-aries may not transfer well from seen to unseen classes.In this paper we propose a centroid-based representation,which clusters visual and semantic representation, consid-ers all training samples at once, and in this way generaliz-ing well to instances from unseen classes. We optimize theclustering using Reinforcement Learning which we show iscritical for our approach to work. We call the proposedmethod CLASTER and observe that it consistently outper-forms the state-of-the-art in all standard datasets, includ-ing UCF101, HMDB51 and Olympic Sports; both in thestandard zero-shot evaluation and the generalized zero-shotlearning. Further, we show that our model performs com-petitively in the image domain as well, outperforming thestate-of-the-art in many settings.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com