Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multidimensional Information Assisted Deep Learning Realizing Flexible Recognition of Vortex Beam Modes (2101.06987v2)

Published 18 Jan 2021 in physics.optics, eess.IV, and physics.med-ph

Abstract: Because of the unlimited range of state space, orbital angular momentum (OAM) as a new degree of freedom of light has attracted great attention in optical communication field. Recently there are a number of researches applying deep learning on recognition of OAM modes through atmospheric turbulence. However, there are several limitations in previous deep learning recognition methods. They all require a constant distance between the laser and receiver, which makes them clumsy and not practical. As far as we know, previous deep learning methods cannot sort vortex beams with positive and negative topological charges, which can reduce information capacity. A Multidimensional Information Assisted Deep Learning Flexible Recognition (MIADLFR) method is proposed in this letter. In MIADLR we utilize not only the intensity profile, also spectrum information to recognize OAM modes unlimited by distance and sign of topological charge (TC). As far as we know, we first make use of multidimensional information to recognize OAM modes and we first utilize spectrum information to recognize OAM modes. Recognition of OAM modes unlimited by distance and sign of TC achieved by MIADLFR method can make optical communication and detection by OAM light much more attractive.

Citations (10)

Summary

We haven't generated a summary for this paper yet.