Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intact-VAE: Estimating Treatment Effects under Unobserved Confounding (2101.06662v3)

Published 17 Jan 2021 in stat.ML, cs.LG, and stat.ME

Abstract: NOTE: This preprint has a flawed theoretical formulation. Please avoid it and refer to the ICLR22 publication https://openreview.net/forum?id=q7n2RngwOM. Also, arXiv:2109.15062 contains some new ideas on unobserved Confounding. As an important problem of causal inference, we discuss the identification and estimation of treatment effects under unobserved confounding. Representing the confounder as a latent variable, we propose Intact-VAE, a new variant of variational autoencoder (VAE), motivated by the prognostic score that is sufficient for identifying treatment effects. We theoretically show that, under certain settings, treatment effects are identified by our model, and further, based on the identifiability of our model (i.e., determinacy of representation), our VAE is a consistent estimator with representation balanced for treatment groups. Experiments on (semi-)synthetic datasets show state-of-the-art performance under diverse settings.

Citations (12)

Summary

We haven't generated a summary for this paper yet.