Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NNStreamer: Efficient and Agile Development of On-Device AI Systems (2101.06371v1)

Published 16 Jan 2021 in cs.LG, cs.AI, and cs.SE

Abstract: We propose NNStreamer, a software system that handles neural networks as filters of stream pipelines, applying the stream processing paradigm to deep neural network applications. A new trend with the wide-spread of deep neural network applications is on-device AI. It is to process neural networks on mobile devices or edge/IoT devices instead of cloud servers. Emerging privacy issues, data transmission costs, and operational costs signify the need for on-device AI, especially if we deploy a massive number of devices. NNStreamer efficiently handles neural networks with complex data stream pipelines on devices, significantly improving the overall performance with minimal efforts. Besides, NNStreamer simplifies implementations and allows reusing off-the-shelf media filters directly, which reduces developmental costs significantly. We are already deploying NNStreamer for a wide range of products and platforms, including the Galaxy series and various consumer electronic devices. The experimental results suggest a reduction in developmental costs and enhanced performance of pipeline architectures and NNStreamer. It is an open-source project incubated by Linux Foundation AI, available to the public and applicable to various hardware and software platforms.

Citations (5)

Summary

We haven't generated a summary for this paper yet.