Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised machine learning of topological phase transitions from experimental data (2101.05712v2)

Published 14 Jan 2021 in cond-mat.quant-gas, cond-mat.dis-nn, cond-mat.mes-hall, and quant-ph

Abstract: Identifying phase transitions is one of the key challenges in quantum many-body physics. Recently, machine learning methods have been shown to be an alternative way of localising phase boundaries also from noisy and imperfect data and without the knowledge of the order parameter. Here we apply different unsupervised machine learning techniques including anomaly detection and influence functions to experimental data from ultracold atoms. In this way we obtain the topological phase diagram of the Haldane model in a completely unbiased fashion. We show that the methods can successfully be applied to experimental data at finite temperature and to data of Floquet systems, when postprocessing the data to a single micromotion phase. Our work provides a benchmark for unsupervised detection of new exotic phases in complex many-body systems.

Summary

We haven't generated a summary for this paper yet.