Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
34 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
115 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
453 tokens/sec
Kimi K2 via Groq Premium
140 tokens/sec
2000 character limit reached

EmoCat: Language-agnostic Emotional Voice Conversion (2101.05695v1)

Published 14 Jan 2021 in eess.AS and cs.SD

Abstract: Emotional voice conversion models adapt the emotion in speech without changing the speaker identity or linguistic content. They are less data hungry than text-to-speech models and allow to generate large amounts of emotional data for downstream tasks. In this work we propose EmoCat, a language-agnostic emotional voice conversion model. It achieves high-quality emotion conversion in German with less than 45 minutes of German emotional recordings by exploiting large amounts of emotional data in US English. EmoCat is an encoder-decoder model based on CopyCat, a voice conversion system which transfers prosody. We use adversarial training to remove emotion leakage from the encoder to the decoder. The adversarial training is improved by a novel contribution to gradient reversal to truly reverse gradients. This allows to remove only the leaking information and to converge to better optima with higher conversion performance. Evaluations show that Emocat can convert to different emotions but misses on emotion intensity compared to the recordings, especially for very expressive emotions. EmoCat is able to achieve audio quality on par with the recordings for five out of six tested emotion intensities.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.