Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relatively Lazy: Indoor-Outdoor Navigation Using Vision and GNSS (2101.05107v2)

Published 13 Jan 2021 in cs.RO and cs.CV

Abstract: Visual Teach and Repeat has shown relative navigation is a robust and efficient solution for autonomous vision-based path following in difficult environments. Adding additional absolute sensors such as Global Navigation Satellite Systems (GNSS) has the potential to expand the domain of Visual Teach and Repeat to environments where the ability to visually localize is not guaranteed. Our method of lazy mapping and delaying estimation until a path-tracking error is needed avoids the need to estimate absolute states. As a result, map optimization is not required and paths can be driven immediately after being taught. We validate our approach on a real robot through an experiment in a joint indoor-outdoor environment comprising 3.5km of autonomous route repeating across a variety of lighting conditions. We achieve smooth error signals throughout the runs despite large sections of dropout for each sensor.

Citations (6)

Summary

We haven't generated a summary for this paper yet.