Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PowerEvaluationBALD: Efficient Evaluation-Oriented Deep (Bayesian) Active Learning with Stochastic Acquisition Functions (2101.03552v2)

Published 10 Jan 2021 in cs.LG and math.OC

Abstract: We develop BatchEvaluationBALD, a new acquisition function for deep Bayesian active learning, as an expansion of BatchBALD that takes into account an evaluation set of unlabeled data, for example, the pool set. We also develop a variant for the non-Bayesian setting, which we call Evaluation Information Gain. To reduce computational requirements and allow these methods to scale to larger acquisition batch sizes, we introduce stochastic acquisition functions that use importance sampling of tempered acquisition scores. We call this method PowerEvaluationBALD. We show in a few initial experiments that PowerEvaluationBALD works on par with BatchEvaluationBALD, which outperforms BatchBALD on Repeated MNIST (MNISTx2), while massively reducing the computational requirements compared to BatchBALD or BatchEvaluationBALD.

Citations (4)

Summary

We haven't generated a summary for this paper yet.