Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence and almost sure properties in Hardy spaces of Dirichlet series (2101.02990v1)

Published 8 Jan 2021 in math.FA

Abstract: Given a frequency $\lambda$, we study general Dirichlet series $\sum a_n e{-\lambda_n s}$. First, we give a new condition on $\lambda$ which ensures that a somewhere convergent Dirichlet series defining a bounded holomorphic function in the right half-plane converges uniformly in this half-plane, improving classical results of Bohr and Landau. Then, following recent works of Defant and Schoolmann, we investigate Hardy spaces of these Dirichlet series. We get general results on almost sure convergence which have an harmonic analysis flavour. Nevertheless, we also exhibit examples showing that it seems hard to get general results on these spaces as spaces of holomorphic functions.

Summary

We haven't generated a summary for this paper yet.