Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Query Processing for Group-By Queries based on Conditional Generative Models (2101.02914v1)

Published 8 Jan 2021 in cs.DB and cs.AI

Abstract: The Group-By query is an important kind of query, which is common and widely used in data warehouses, data analytics, and data visualization. Approximate query processing is an effective way to increase the querying efficiency on big data. The answer to a group-by query involves multiple values, which makes it difficult to provide sufficiently accurate estimations for all the groups. Stratified sampling improves the accuracy compared with the uniform sampling, but the samples chosen for some special queries cannot work for other queries. Online sampling chooses samples for the given query at query time, but it requires a long latency. Thus, it is a challenge to achieve both accuracy and efficiency at the same time. Facing such challenge, in this work, we propose a sample generation framework based on a conditional generative model. The sample generation framework can generate any number of samples for the given query without accessing the data. The proposed framework based on the lightweight model can be combined with stratified sampling and online aggregation to improve the estimation accuracy for group-by queries. The experimental results show that our proposed methods are both efficient and accurate.

Citations (4)

Summary

We haven't generated a summary for this paper yet.