Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Clinical Evaluation of a Low-Cost Strain Gauge Respiration Belt and Machine Learning to Detect Sleep Apnea (2101.02595v1)

Published 7 Jan 2021 in cs.LG

Abstract: Sleep apnea is a serious and severely under-diagnosed sleep-related respiration disorder characterized by repeated disrupted breathing events during sleep. It is diagnosed via polysomnography which is an expensive test conducted in a sleep lab requiring sleep experts to manually score the recorded data. Since the symptoms of sleep apnea are often ambiguous, it is difficult for a physician to decide whether to prescribe polysomnography. In this study, we investigate whether helpful information can be obtained by collecting and automatically analysing sleep data using a smartphone and an inexpensive strain gauge respiration belt. We evaluate how accurately we can detect sleep apnea with wide variety of machine learning techniques with data from a clinical study with 49 overnight sleep recordings. With less than one hour of training, we can distinguish between normal and apneic minutes with an accuracy, sensitivity, and specificity of 0.7609, 0.7833, and 0.7217, respectively. These results can be achieved even if we train only on high-quality data from an entirely separate, clinically certified sensor, which has the potential to substantially reduce the cost of data collection. Data from a complete night can be analyzed in about one second on a smartphone.

Citations (11)

Summary

We haven't generated a summary for this paper yet.