Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A novel policy for pre-trained Deep Reinforcement Learning for Speech Emotion Recognition (2101.00738v2)

Published 4 Jan 2021 in cs.SD, cs.LG, and eess.AS

Abstract: Reinforcement Learning (RL) is a semi-supervised learning paradigm which an agent learns by interacting with an environment. Deep learning in combination with RL provides an efficient method to learn how to interact with the environment is called Deep Reinforcement Learning (deep RL). Deep RL has gained tremendous success in gaming - such as AlphaGo, but its potential have rarely being explored for challenging tasks like Speech Emotion Recognition (SER). The deep RL being used for SER can potentially improve the performance of an automated call centre agent by dynamically learning emotional-aware response to customer queries. While the policy employed by the RL agent plays a major role in action selection, there is no current RL policy tailored for SER. In addition, extended learning period is a general challenge for deep RL which can impact the speed of learning for SER. Therefore, in this paper, we introduce a novel policy - "Zeta policy" which is tailored for SER and apply Pre-training in deep RL to achieve faster learning rate. Pre-training with cross dataset was also studied to discover the feasibility of pre-training the RL Agent with a similar dataset in a scenario of where no real environmental data is not available. IEMOCAP and SAVEE datasets were used for the evaluation with the problem being to recognize four emotions happy, sad, angry and neutral in the utterances provided. Experimental results show that the proposed "Zeta policy" performs better than existing policies. The results also support that pre-training can reduce the training time upon reducing the warm-up period and is robust to cross-corpus scenario.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Thejan Rajapakshe (8 papers)
  2. Rajib Rana (52 papers)
  3. Sara Khalifa (21 papers)
  4. Björn W. Schuller (153 papers)
  5. Jiajun Liu (61 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.