Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long Plane Trees (2101.00445v2)

Published 2 Jan 2021 in cs.CG

Abstract: In the longest plane spanning tree problem, we are given a finite planar point set $\mathcal{P}$, and our task is to find a plane (i.e., noncrossing) spanning tree for $\mathcal{P}$ with maximum total Euclidean edge length. Despite more than two decades of research, it remains open whether this problem is NP-hard. Thus, previous efforts have focused on olynomial-time algorithms that produce plane trees whose total edge length approximates $\text{OPT}$, the maximum possible length. The approximate trees in these algorithms all have small unweighted diameter, typically three or four. It is natural to ask whether this is a common feature of longest plane spanning trees, or an artifact of the specific approximation algorithms. We provide three results to elucidate the interplay between the approximation guarantee and the unweighted diameter of the approximate trees. First, we describe a polynomial-time algorithm to construct a plane tree with diameter at most four and total edge length at least $0.546 \cdot \text{OPT}$. This constitutes a substantial improvement over the state of the art. Second, we show that a longest plane tree among those with diameter at most three can be found in polynomial time. Third, for any candidate diameter $d \geq 3$, we provide upper bounds on the approximation factor that can be achieved by a longest plane tree with diameter at most $d$ (compared to a longest plane tree without constraints).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Long non-crossing configurations in the plane. Fundam. Inform., 22(4):385–394, 1995. doi:10.3233/FI-1995-2245.
  2. Matching points with things. In Alejandro López-Ortiz, editor, LATIN 2010: Theoretical Informatics, volume 6034 of Lecture Notes in Computer Science, pages 456–467, 2010. doi:10.1007/978-3-642-12200-2_40.
  3. Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM, 45(5):753–782, 1998. doi:10.1145/290179.290180.
  4. Approximation schemes for degree-restricted MST and red-blue separation problems. Algorithmica, 40(3):189–210, 2004. doi:10.1007/s00453-004-1103-4.
  5. The geometric maximum traveling salesman problem. J. ACM, 50(5):641–664, 2003. doi:10.1145/876638.876640.
  6. Ahmad Biniaz. Euclidean bottleneck bounded-degree spanning tree ratios. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 826–836. SIAM, 2020. doi:10.1137/1.9781611975994.50.
  7. Ahmad Biniaz. Improved approximation ratios for two Euclidean maximum spanning tree problems. arXiv:2010.03870, 2020.
  8. Maximum plane trees in multipartite geometric graphs. Algorithmica, 81(4):1512–1534, 2019. doi:10.1007/s00453-018-0482-x.
  9. Johannes Blömer. Computing sums of radicals in polynomial time. In 32nd Annual Symposium on Foundations of Computer Science, FOCS 1991, San Juan, Puerto Rico, 1-4 October 1991, pages 670–677. IEEE Computer Society, 1991. doi:10.1109/SFCS.1991.185434.
  10. A better approximation for longest noncrossing spanning trees. In 36th European Workshop on Computational Geometry (EuroCG), 2020.
  11. Timothy M. Chan. Euclidean bounded-degree spanning tree ratios. Discret. Comput. Geom., 32(2):177–194, 2004. doi:10.1007/s00454-004-1117-3.
  12. Progress on maximum weight triangulation. In Proc. 10th Annu. Int. Conf. Computing and Combinatorics (COCOON), volume 3106 of Lecture Notes in Computer Science, pages 53–61. Springer, 2004. doi:10.1007/978-3-540-27798-9\_8.
  13. Geometric retrieval problems. Inf. Control., 63(1/2):39–57, 1984. doi:10.1016/S0019-9958(84)80040-6.
  14. Introduction to Algorithms. MIT Press, 3rd edition, 2009. URL: http://mitpress.mit.edu/books/introduction-algorithms.
  15. Computational geometry. Algorithms and applications. Springer-Verlag, Berlin, third edition, 2008. doi:10.1007/978-3-540-77974-2.
  16. Long non-crossing configurations in the plane. Discrete Comput. Geom., 44(4):727–752, 2010. doi:10.1007/s00454-010-9277-9.
  17. Geometry helps in bottleneck matching and related problems. Algorithmica, 31(1):1–28, 2001. doi:10.1007/s00453-001-0016-8.
  18. David Eppstein. Spanning trees and spanners. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, pages 425–461. North Holland / Elsevier, 2000. doi:10.1016/b978-044482537-7/50010-3.
  19. The Euclidean degree-4 minimum spanning tree problem is NP-hard. In Proceedings of the 25th ACM Symposium on Computational Geometry, pages 179–188. ACM, 2009. doi:10.1145/1542362.1542399.
  20. Peter D. Gilbert. New results in planar triangulations. Technical Report R–850, Univ. Illinois Coordinated Science Lab, 1979.
  21. Sariel Har-Peled. Geometric approximation algorithms, volume 173 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2011. doi:10.1090/surv/173.
  22. Gheza Tom Klincsek. Minimal triangulations of polygonal domains. Ann. Discrete Math., 9:121–123, 1980. doi:10.1016/S0167-5060(08)70044-X.
  23. Jirí Matoušek. Range searching with efficient hiearchical cutting. Discret. Comput. Geom., 10:157–182, 1993. doi:10.1007/BF02573972.
  24. Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k𝑘kitalic_k-MST, and related problems. SIAM J. Comput., 28(4):1298–1309, 1999. doi:10.1137/S0097539796309764.
  25. Joseph S. B. Mitchell. Shortest paths and networks. In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of Discrete and Computational Geometry, pages 607–641. Chapman and Hall/CRC, 2nd edition, 2004. doi:10.1201/9781420035315.ch27.
  26. Joseph S. B. Mitchell and Wolfgang Mulzer. Proximity algorithms. In Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational Geometry, chapter 32, pages 849–874. CRC Press, Boca Raton, 3rd edition, 2017. doi:10.1201/9781315119601.
  27. Wolfgang Mulzer. Minimum dilation triangulations for the regular n𝑛nitalic_n-gon. Master’s thesis, Freie Universität Berlin, Germany, 2004.
  28. The tree stabbing number is not monotone. In Proceedings of the 36th European Workshop on Computational Geometry (EWCG), pages 78:1–78:8, 2020.
  29. Minimum-weight triangulation is NP-hard. J. ACM, 55(2):11:1–11:29, 2008. doi:10.1145/1346330.1346336.
  30. Geometric spanner networks. Cambridge University Press, Cambridge, 2007. doi:10.1017/CBO9780511546884.
  31. Christos H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theor. Comput. Sci., 4(3):237–244, 1977. doi:10.1016/0304-3975(77)90012-3.
  32. On two geometric problems related to the traveling salesman problem. J. Algorithms, 5(2):231–246, 1984. doi:10.1016/0196-6774(84)90029-4.
  33. A quasi-polynomial time approximation scheme for minimum weight triangulation. J. ACM, 56(3):15:1–15:47, 2009. doi:10.1145/1516512.1516517.
  34. Emo Welzl. On spanning trees with low crossing numbers. In Data structures and efficient algorithms, volume 594 of Lecture Notes in Comput. Sci., pages 233–249. Springer, Berlin, 1992. doi:10.1007/3-540-55488-2_30.
  35. The design of approximation algorithms. Cambridge University Press, Cambridge, 2011. doi:10.1017/CBO9780511921735.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Sergio Cabello (47 papers)
  2. Michael Hoffmann (51 papers)
  3. Katharina Klost (9 papers)
  4. Wolfgang Mulzer (66 papers)
  5. Josef Tkadlec (32 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com