Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantifying Spatial Homogeneity of Urban Road Networks via Graph Neural Networks (2101.00307v2)

Published 1 Jan 2021 in physics.soc-ph, cs.LG, and cs.SI

Abstract: Quantifying the topological similarities of different parts of urban road networks (URNs) enables us to understand the urban growth patterns. While conventional statistics provide useful information about characteristics of either a single node's direct neighbors or the entire network, such metrics fail to measure the similarities of subnetworks considering local indirect neighborhood relationships. In this study, we propose a graph-based machine-learning method to quantify the spatial homogeneity of subnetworks. We apply the method to 11,790 urban road networks across 30 cities worldwide to measure the spatial homogeneity of road networks within each city and across different cities. We find that intra-city spatial homogeneity is highly associated with socioeconomic statuses such as GDP and population growth. Moreover, inter-city spatial homogeneity obtained by transferring the model across different cities, reveals the inter-city similarity of urban network structures originating in Europe, passed on to cities in the US and Asia. Socioeconomic development and inter-city similarity revealed using our method can be leveraged to understand and transfer insights across cities. It also enables us to address urban policy challenges including network planning in rapidly urbanizing areas and combating regional inequality.

Citations (26)

Summary

We haven't generated a summary for this paper yet.