Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Timely Communication in Federated Learning (2012.15831v2)

Published 31 Dec 2020 in cs.IT, cs.DC, cs.LG, cs.NI, eess.SP, and math.IT

Abstract: We consider a federated learning framework in which a parameter server (PS) trains a global model by using $n$ clients without actually storing the client data centrally at a cloud server. Focusing on a setting where the client datasets are fast changing and highly temporal in nature, we investigate the timeliness of model updates and propose a novel timely communication scheme. Under the proposed scheme, at each iteration, the PS waits for $m$ available clients and sends them the current model. Then, the PS uses the local updates of the earliest $k$ out of $m$ clients to update the global model at each iteration. We find the average age of information experienced by each client and numerically characterize the age-optimal $m$ and $k$ values for a given $n$. Our results indicate that, in addition to ensuring timeliness, the proposed communication scheme results in significantly smaller average iteration times compared to random client selection without hurting the convergence of the global learning task.

Citations (36)

Summary

We haven't generated a summary for this paper yet.