Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher-order vector Peregrine solitons and asymptotic estimates for the multi-component nonlinear Schrödinger equations (2012.15603v1)

Published 31 Dec 2020 in nlin.SI, math-ph, math.AP, math.MP, nlin.PS, and physics.comp-ph

Abstract: We first report the first- and higher-order vector Peregrine solitons (alias rational rogue waves) for the any multi-component NLS equations based on the loop group theory, an explicit (n + 1)-multiple eigenvalue of a characteristic polynomial of degree (n + 1) related to the condition of Benjamin-Feir instability, and inverse functions. Particularly, these vector rational rogue waves are parity-time symmetric for some parameter constraints. A systematic and effective approach is proposed to study the asymptotic behaviors of these vector rogue waves such that the decompositions of rogue waves are related to the so-called governing polynomials, which pave a powerful way in the study of vector rogue wave structures of the multi-component integrable systems. The vector rogue waves with maximal amplitudes can be determined via the parameter vectors, which is interesting and useful in the multi-component physical systems.

Summary

We haven't generated a summary for this paper yet.