Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coreference Reasoning in Machine Reading Comprehension (2012.15573v2)

Published 31 Dec 2020 in cs.CL

Abstract: Coreference resolution is essential for natural language understanding and has been long studied in NLP. In recent years, as the format of Question Answering (QA) became a standard for machine reading comprehension (MRC), there have been data collection efforts, e.g., Dasigi et al. (2019), that attempt to evaluate the ability of MRC models to reason about coreference. However, as we show, coreference reasoning in MRC is a greater challenge than earlier thought; MRC datasets do not reflect the natural distribution and, consequently, the challenges of coreference reasoning. Specifically, success on these datasets does not reflect a model's proficiency in coreference reasoning. We propose a methodology for creating MRC datasets that better reflect the challenges of coreference reasoning and use it to create a sample evaluation set. The results on our dataset show that state-of-the-art models still struggle with these phenomena. Furthermore, we develop an effective way to use naturally occurring coreference phenomena from existing coreference resolution datasets when training MRC models. This allows us to show an improvement in the coreference reasoning abilities of state-of-the-art models. The code and the resulting dataset are available at https://github.com/UKPLab/coref-reasoning-in-qa.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mingzhu Wu (4 papers)
  2. Nafise Sadat Moosavi (38 papers)
  3. Dan Roth (222 papers)
  4. Iryna Gurevych (264 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com