Papers
Topics
Authors
Recent
2000 character limit reached

Flexible model composition in machine learning and its implementation in MLJ

Published 31 Dec 2020 in cs.LG | (2012.15505v1)

Abstract: A graph-based protocol called `learning networks' which combine assorted machine learning models into meta-models is described. Learning networks are shown to overcome several limitations of model composition as implemented in the dominant machine learning platforms. After illustrating the protocol in simple examples, a concise syntax for specifying a learning network, implemented in the MLJ framework, is presented. Using the syntax, it is shown that learning networks are are sufficiently flexible to include Wolpert's model stacking, with out-of-sample predictions for the base learners.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.