Linear quadratic mean field social optimization: Asymptotic solvability and decentralized control
Abstract: This paper studies asymptotic solvability of a linear quadratic (LQ) mean field social optimization problem with controlled diffusions and indefinite state and control weights. Starting with an $N$-agent model, we employ a rescaling approach to derive a low-dimensional Riccati ordinary differential equation (ODE) system, which characterizes a necessary and sufficient condition for asymptotic solvability. The decentralized control obtained from the mean field limit ensures a bounded optimality loss in minimizing the social cost having magnitude $O(N)$, which implies an optimality loss of $O(1/N)$ per agent. We further quantify the efficiency gain of the social optimum with respect to the solution of the mean field game.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.