Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Criticality and conformality in the random dimer model (2012.13956v2)

Published 27 Dec 2020 in cond-mat.dis-nn, math-ph, and math.MP

Abstract: In critical systems, the effect of a localized perturbation affects points that are arbitrarily far from the perturbation location. In this paper, we study the effect of localized perturbations on the solution of the random dimer problem in $2D$. By means of an accurate numerical analysis, we show that a local perturbation of the optimal covering induces an excitation whose size is extensive with finite probability. We compute the fractal dimension of the excitations and scaling exponents. In particular, excitations in random dimer problems on non-bipartite lattices have the same statistical properties of domain walls in the $2D$ spin glass. Excitations produced in bipartite lattices, instead, are compatible with a loop-erased self-avoiding random walk process. In both cases, we find evidence of conformal invariance of the excitations that is compatible with $\mathrm{SLE}_\kappa$ with parameter $\kappa$ depending on the bipartiteness of the underlying lattice only.

Summary

We haven't generated a summary for this paper yet.