Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptively Solving the Local-Minimum Problem for Deep Neural Networks (2012.13632v1)

Published 25 Dec 2020 in cs.LG and stat.ML

Abstract: This paper aims to overcome a fundamental problem in the theory and application of deep neural networks (DNNs). We propose a method to solve the local minimum problem in training DNNs directly. Our method is based on the cross-entropy loss criterion's convexification by transforming the cross-entropy loss into a risk averting error (RAE) criterion. To alleviate numerical difficulties, a normalized RAE (NRAE) is employed. The convexity region of the cross-entropy loss expands as its risk sensitivity index (RSI) increases. Making the best use of the convexity region, our method starts training with an extensive RSI, gradually reduces it, and switches to the RAE as soon as the RAE is numerically feasible. After training converges, the resultant deep learning machine is expected to be inside the attraction basin of a global minimum of the cross-entropy loss. Numerical results are provided to show the effectiveness of the proposed method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.