Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Active Learning Approach to Adaptive Beamforming for mmWave Initial Alignment (2012.13607v2)

Published 25 Dec 2020 in cs.IT and math.IT

Abstract: This paper proposes a deep learning approach to the adaptive and sequential beamforming design problem for the initial access phase in a mmWave environment with a single-path channel. For a single-user scenario where the problem is equivalent to designing the sequence of sensing beamformers to learn the angle of arrival (AoA) of the dominant path, we propose a novel deep neural network (DNN) that designs the adaptive sensing vectors sequentially based on the available information so far at the base station (BS). By recognizing that the AoA posterior distribution is a sufficient statistic for solving the initial access problem, we use the posterior distribution as the input to the proposed DNN for designing the adaptive sensing strategy. However, computing the posterior distribution can be computationally challenging when the channel fading coefficient is unknown. To address this issue, this paper proposes to use an estimate of the fading coefficient to compute an approximation of the posterior distribution. Further, this paper shows that the proposed DNN can deal with practical beamforming constraints such as the constant modulus constraint. Numerical results demonstrate that compared to the existing adaptive and non-adaptive beamforming schemes, the proposed DNN-based adaptive sensing strategy achieves a significantly better AoA acquisition performance.

Citations (46)

Summary

We haven't generated a summary for this paper yet.