Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels (2012.13203v1)

Published 24 Dec 2020 in math.AP

Abstract: We deal with the problem of approximating a scalar conservation law by a conservation law with nonlocal flux. As convolution kernel in the nonlocal flux, we consider an exponential-type approximation of the Dirac distribution. This enables us to obtain a total variation bound on the nonlocal term. By using this, we prove that the (unique) weak solution of the nonlocal problem converges strongly in $C(L{1}_{\text{loc}})$ to the entropy solution of the local conservation law. We conclude with several numerical illustrations which underline the main results and, in particular, the difference between the solution and the nonlocal term.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.