Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
164 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NBIHT: An Efficient Algorithm for 1-bit Compressed Sensing with Optimal Error Decay Rate (2012.12886v1)

Published 23 Dec 2020 in cs.IT, cs.NA, math.IT, and math.NA

Abstract: The Binary Iterative Hard Thresholding (BIHT) algorithm is a popular reconstruction method for one-bit compressed sensing due to its simplicity and fast empirical convergence. There have been several works about BIHT but a theoretical understanding of the corresponding approximation error and convergence rate still remains open. This paper shows that the normalized version of BIHT (NBHIT) achieves an approximation error rate optimal up to logarithmic factors. More precisely, using $m$ one-bit measurements of an $s$-sparse vector $x$, we prove that the approximation error of NBIHT is of order $O \left(1 \over m \right)$ up to logarithmic factors, which matches the information-theoretic lower bound $\Omega \left(1 \over m \right)$ proved by Jacques, Laska, Boufounos, and Baraniuk in 2013. To our knowledge, this is the first theoretical analysis of a BIHT-type algorithm that explains the optimal rate of error decay empirically observed in the literature. This also makes NBIHT the first provable computationally-efficient one-bit compressed sensing algorithm that breaks the inverse square root error decay rate $O \left(1 \over m{1/2} \right)$.

Citations (8)

Summary

We haven't generated a summary for this paper yet.