Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal dimension dependence of the Metropolis-Adjusted Langevin Algorithm (2012.12810v1)

Published 23 Dec 2020 in math.ST, cs.LG, and stat.TH

Abstract: Conventional wisdom in the sampling literature, backed by a popular diffusion scaling limit, suggests that the mixing time of the Metropolis-Adjusted Langevin Algorithm (MALA) scales as $O(d{1/3})$, where $d$ is the dimension. However, the diffusion scaling limit requires stringent assumptions on the target distribution and is asymptotic in nature. In contrast, the best known non-asymptotic mixing time bound for MALA on the class of log-smooth and strongly log-concave distributions is $O(d)$. In this work, we establish that the mixing time of MALA on this class of target distributions is $\widetilde\Theta(d{1/2})$ under a warm start. Our upper bound proof introduces a new technique based on a projection characterization of the Metropolis adjustment which reduces the study of MALA to the well-studied discretization analysis of the Langevin SDE and bypasses direct computation of the acceptance probability.

Citations (56)

Summary

We haven't generated a summary for this paper yet.