On weighted Compactness of commutators of bilinear maximal Calderón-Zygmund singular integral operators (2012.12747v2)
Abstract: Let $T$ be a bilinear Calder\'on-Zygmund singular integral operator and $T*$ be its corresponding truncated maximal operator. For any $b\in\text{BMO}(\mathbb {R}n)$ and $\vec{b}=(b_1,\ b_2)\in\text{BMO}(\mathbb {R}n)\times\text {BMO}(\mathbb{R}n)$, let $T*_{b,j}$ (j=1,2), $T*_{\vec{b}}\ $ be the commutators in the j-th entry and the iterated commutators of $T*$, respectively. In this paper, for all $1<p_1,p_2<\infty$, $\frac{1}{p}=\frac{1}{p_1}+\frac{1}{p_2}$, we show that $T*_{b,j}$ and $T*_{\vec{b}}$ are compact operators from $L{p_1}(w_1)\times L{p_2}(w_2)$ to $Lp(v_{\vec{w}})$, if $b,b_1,b_2\in{\rm CMO}(\mathbb{R}n)$ and $\vec{w}=(w_1,w_2)\in A_{\vec{p}}$, $v_{\vec{w}}=w_1{p/p_1}w_2{p/p_2}$. Here ${\rm CMO}(\mathbb{R}n)$ denotes the closure of $\mathcal{C}c\infty(\mathbb{R}n)$ in the ${\rm BMO}(\mathbb{R}n)$ topology and $A{\vec{p}}$ is the multiple weights class.