Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Consistent Higher-Order Isogeometric Shell Formulation (2012.11975v1)

Published 22 Dec 2020 in cs.CE

Abstract: Shell analysis is a well-established field, but achieving optimal higher-order convergence rates for such simulations is a difficult challenge. We present an isogeometric Kirchhoff-Love shell framework that treats every numerical aspect in a consistent higher-order accurate way. In particular, a single trimmed B-spline surface provides a sufficiently smooth geometry, and the non-symmetric Nitsche method enforces the boundary conditions. A higher-order accurate reparametrization of cut knot spans in the parameter space provides a robust, higher-order accurate quadrature for (multiple) trimming curves, and the extended B-spline concept controls the conditioning of the resulting system of equations. Besides these components ensuring all requirements for higher-order accuracy, the presented shell formulation is based on tangential differential calculus, and level-set functions define the trimming curves. Numerical experiments confirm that the approach yields higher-order convergence rates, given that the solution is sufficiently smooth.

Citations (2)

Summary

We haven't generated a summary for this paper yet.