Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

$T\bar{T}$ deformation of random matrices (2012.11714v3)

Published 21 Dec 2020 in hep-th

Abstract: We define and study the $T\bar{T}$ deformation of a random matrix model, showing a consistent definition requires the inclusion of both the perturbative and non-perturbative solutions to the flow equation. The deformed model is well defined for arbitrary values of the coupling, exhibiting a phase transition for the critical value in which the spectrum complexifies. The transition is between a single and a double-cut phase, typically third order and in the same universality class as the Gross-Witten transition in lattice gauge theory. The $T\bar{T}$ deformation of a double scaled model is more subtle and complicated, and we are not able to give a compelling definition, although we discuss obstacles and possible alternatives. Preliminary comparisons with finite cut-off Jackiw-Teitelboim gravity are presented.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)