Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning for Test Case Prioritization (2012.11364v1)

Published 18 Dec 2020 in cs.SE, cs.AI, and cs.LG

Abstract: In modern software engineering, Continuous Integration (CI) has become an indispensable step towards systematically managing the life cycles of software development. Large companies struggle with keeping the pipeline updated and operational, in useful time, due to the large amount of changes and addition of features, that build on top of each other and have several developers, working on different platforms. Associated with such software changes, there is always a strong component of Testing. As teams and projects grow, exhaustive testing quickly becomes inhibitive, becoming adamant to select the most relevant test cases earlier, without compromising software quality. This paper extends recent studies on applying Reinforcement Learning to optimize testing strategies. We test its ability to adapt to new environments, by testing it on novel data extracted from a financial institution, yielding a Normalized percentage of Fault Detection (NAPFD) of over $0.6$ using the Network Approximator and Test Case Failure Reward. Additionally, we studied the impact of using Decision Tree (DT) Approximator as a model for memory representation, which failed to produce significant improvements relative to Artificial Neural Networks.

Summary

We haven't generated a summary for this paper yet.