Papers
Topics
Authors
Recent
2000 character limit reached

Weighted sparsity regularization for source identification for elliptic PDEs

Published 21 Dec 2020 in math.NA, cs.NA, and math.OC | (2012.11280v5)

Abstract: This investigation is motivated by PDE-constrained optimization problems arising in connection with electrocardiograms (ECGs) and electroencephalography (EEG). Standard sparsity regularization does not necessarily produce adequate results for these applications because only boundary data/observations are available for the identification of the unknown source, which may be interior. We therefore study a weighted $\ell1$-regularization technique for solving inverse problems when the forward operator has a significant null space. In particular, we prove that a sparse source, regardless of whether it is interior or located at the boundary, can be exactly recovered with this weighting procedure as the regularization parameter $\alpha$ tends to zero. Our analysis is supported by numerical experiments for cases with one and several local sources. The theory is developed in terms of Euclidean spaces, and our results can therefore be applied to many problems.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.