Papers
Topics
Authors
Recent
Search
2000 character limit reached

Efficient qubit phase estimation using adaptive measurements

Published 21 Dec 2020 in quant-ph | (2012.11088v2)

Abstract: Estimating correctly the quantum phase of a physical system is a central problem in quantum parameter estimation theory due to its wide range of applications from quantum metrology to cryptography. Ideally, the optimal quantum estimator is given by the so-called quantum Cram\'er-Rao bound, so any measurement strategy aims to obtain estimations as close as possible to it. However, more often than not, the current state-of-the-art methods to estimate quantum phases fail to reach this bound as they rely on maximum likelihood estimators of non-identifiable likelihood functions. In this work we thoroughly review various schemes for estimating the phase of a qubit, identifying the underlying problem which prohibits these methods to reach the quantum Cram\'er-Rao bound, and propose a new adaptive scheme based on covariant measurements to circumvent this problem. Our findings are carefully checked by Monte Carlo simulations, showing that the method we propose is both mathematically and experimentally more realistic and more efficient than the methods currently available.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.