Inhomogeneous affine Volterra processes
Abstract: We extend recent results on affine Volterra processes to the inhomogeneous case. This includes moment bounds of solutions of Volterra equations driven by a Brownian motion with an inhomogeneous kernel $K(t,s)$ and inhomogeneous drift and diffusion coefficients $b(s,X_s)$ and $\sigma(s,X_s)$. In the case of affine $b$ and $\sigma \sigmaT$ we show how the conditional Fourier-Laplace functional can be represented by a solution of an inhomogeneous Riccati-Volterra integral equation. For a kernel of convolution type $K(t,s)=\overline{K}(t-s)$ we establish existence of a solution to the stochastic inhomogeneous Volterra equation. If in addition $b$ and $\sigma \sigmaT$ are affine, we prove that the conditional Fourier-Laplace functional is exponential-affine in the past path. Finally, we apply these results to an inhomogeneous extension of the rough Heston model used in mathematical finance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.