Papers
Topics
Authors
Recent
2000 character limit reached

Inhomogeneous affine Volterra processes

Published 20 Dec 2020 in math.PR | (2012.10966v1)

Abstract: We extend recent results on affine Volterra processes to the inhomogeneous case. This includes moment bounds of solutions of Volterra equations driven by a Brownian motion with an inhomogeneous kernel $K(t,s)$ and inhomogeneous drift and diffusion coefficients $b(s,X_s)$ and $\sigma(s,X_s)$. In the case of affine $b$ and $\sigma \sigmaT$ we show how the conditional Fourier-Laplace functional can be represented by a solution of an inhomogeneous Riccati-Volterra integral equation. For a kernel of convolution type $K(t,s)=\overline{K}(t-s)$ we establish existence of a solution to the stochastic inhomogeneous Volterra equation. If in addition $b$ and $\sigma \sigmaT$ are affine, we prove that the conditional Fourier-Laplace functional is exponential-affine in the past path. Finally, we apply these results to an inhomogeneous extension of the rough Heston model used in mathematical finance.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.