Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 33 tok/s Pro
GPT-4o 78 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 237 tok/s Pro
2000 character limit reached

Intensity -- A Metric Approach to Quantifying Attractor Robustness in ODEs (2012.10786v1)

Published 19 Dec 2020 in math.DS

Abstract: Although mathematical models do not fully match reality, robustness of dynamical objects to perturbation helps bridge from theoretical to real-world dynamical systems. Classical theories of structural stability and isolated invariant sets treat robustness of qualitative dynamics to sufficiently small errors. But they do not indicate just how large a perturbation can become before the qualitative behavior of our system changes fundamentally. Here we introduce a quantity, intensity of attraction, that measures the robustness of attractors in metric terms. Working in the setting of ordinary differential equations on $\mathbb{R}n$, we consider robustness to vector field perturbations that are time-dependent or -independent. We define intensity in a control-theoretic framework, based on the magnitude of control needed to steer trajectories out of a domain of attraction. Our main result is that intensity also quantifies the robustness of an attractor to time-independent vector field perturbations; we prove this by connecting the reachable sets of control theory to isolating blocks of Conley theory. In addition to treating classical questions of robustness in a new metric framework, intensity of attraction offers a novel tool for resilience quantification in ecological applications. Unlike many measurements of resilience, intensity detects the strength of transient dynamics in a domain of attraction.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.