Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

Exploring Fluent Query Reformulations with Text-to-Text Transformers and Reinforcement Learning (2012.10033v2)

Published 18 Dec 2020 in cs.CL, cs.AI, and cs.LG

Abstract: Query reformulation aims to alter noisy or ambiguous text sequences into coherent ones closer to natural language questions. This is to prevent errors from propagating in a client-facing pipeline and promote better communication with users. Besides, it is crucial to maintain performance in downstream environments like question answering when rephrased queries are given as input. We show that under the previous framework (AQA), attempts to alter RL algorithms do not bring significant benefits to either reward acquisition or sequence fluency. Instead, we leverage a query-reformulating text-to-text transformer (QRT5) and apply policy-based RL algorithms to further nudge this reformulator and obtain better answers downstream by generating reward-acquiring query trajectories. QRT5 shows better sample efficiency in RL to achieve the same level of QA performance as the previous approach. It can generate reformulations with more readability based on query well-formedness evaluations and can generalize to out-of-sample data. Our framework is demonstrated to be flexible, allowing reward signals to be sourced from different downstream environments such as intent classification.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.