Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The dual of an evaluation code (2012.10016v2)

Published 18 Dec 2020 in math.AC, cs.IT, math.AG, math.CO, and math.IT

Abstract: The aim of this work is to study the dual and the algebraic dual of an evaluation code using standard monomials and indicator functions. We show that the dual of an evaluation code is the evaluation code of the algebraic dual. We develop an algorithm for computing a basis for the algebraic dual. Let $C_1$ and $C_2$ be linear codes spanned by standard monomials. We give a combinatorial condition for the monomial equivalence of $C_1$ and the dual $C_2\perp$. Moreover, we give an explicit description of a generator matrix of $C_2\perp$ in terms of that of $C_1$ and coefficients of indicator functions. For Reed--Muller-type codes we give a duality criterion in terms of the v-number and the Hilbert function of a vanishing ideal. As an application, we provide an explicit duality for Reed--Muller-type codes corresponding to Gorenstein ideals. In addition, when the evaluation code is monomial and the set of evaluation points is a degenerate affine space, we classify when the dual is a monomial code.

Citations (16)

Summary

We haven't generated a summary for this paper yet.