Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Fourier Transforms on Rank-1 Lattices for the Rapid and Low-Memory Approximation of Functions of Many Variables (2012.09889v1)

Published 17 Dec 2020 in math.NA and cs.NA

Abstract: We consider fast, provably accurate algorithms for approximating functions on the $d$-dimensional torus, $f: \mathbb{ T }d \rightarrow \mathbb{C}$, that are sparse (or compressible) in the Fourier basis. In particular, suppose that the Fourier coefficients of $f$, ${c_{\bf k} (f) }{{\bf k} \in \mathbb{Z}d}$, are concentrated in a finite set $I \subset \mathbb{Z}d$ so that $$\min{\Omega \subset I s.t. |\Omega| =s } \left| f - \sum_{{\bf k} \in \Omega} c_{\bf k} (f) e{ -2 \pi i {\bf k} \cdot \circ} \right|2 < \epsilon |f |_2$$ holds for $s \ll |I|$ and $\epsilon \in (0,1)$. We aim to identify a near-minimizing subset $\Omega \subset I$ and accurately approximate the associated Fourier coefficients ${ c{\bf k} (f) }_{{\bf k} \in \Omega}$ as rapidly as possible. We present both deterministic as well as randomized algorithms using $O(s2 d \logc (|I|))$-time/memory and $O(s d \logc (|I|))$-time/memory, respectively. Most crucially, all of the methods proposed herein achieve these runtimes while satisfying theoretical best $s$-term approximation guarantees which guarantee their numerical accuracy and robustness to noise for general functions. These are achieved by modifying several one-dimensional Sparse Fourier Transform (SFT) methods to subsample a function along a reconstructing rank-1 lattice for the given frequency set $I$ to rapidly identify a near-minimizing subset $\Omega \subset I$ without using anything about the lattice beyond its generating vector. This requires new fast and low-memory frequency identification techniques capable of rapidly recovering vector-valued frequencies in $\mathbb{Z}d$ as opposed to simple integer frequencies in the univariate setting. Two different strategies are proposed and analyzed, each with different accuracy versus computational speed and memory tradeoffs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.