Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nearly tight Trotterization of interacting electrons (2012.09194v2)

Published 16 Dec 2020 in quant-ph, cond-mat.str-el, and cs.DS

Abstract: We consider simulating quantum systems on digital quantum computers. We show that the performance of quantum simulation can be improved by simultaneously exploiting commutativity of the target Hamiltonian, sparsity of interactions, and prior knowledge of the initial state. We achieve this using Trotterization for a class of interacting electrons that encompasses various physical systems, including the plane-wave-basis electronic structure and the Fermi-Hubbard model. We estimate the simulation error by taking the transition amplitude of nested commutators of the Hamiltonian terms within the $\eta$-electron manifold. We develop multiple techniques for bounding the transition amplitude and expectation of general fermionic operators, which may be of independent interest. We show that it suffices to use $\left(\frac{n{5/3}}{\eta{2/3}}+n{4/3}\eta{2/3}\right)n{o(1)}$ gates to simulate electronic structure in the plane-wave basis with $n$ spin orbitals and $\eta$ electrons, improving the best previous result in second quantization up to a negligible factor while outperforming the first-quantized simulation when $n=\eta{2-o(1)}$. We also obtain an improvement for simulating the Fermi-Hubbard model. We construct concrete examples for which our bounds are almost saturated, giving a nearly tight Trotterization of interacting electrons.

Citations (51)

Summary

We haven't generated a summary for this paper yet.