Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluation of deep learning-based myocardial infarction quantification using Segment CMR software (2012.09070v3)

Published 16 Dec 2020 in eess.IV, cs.CV, and cs.LG

Abstract: This work evaluates deep learning-based myocardial infarction (MI) quantification using Segment cardiovascular magnetic resonance (CMR) software. Segment CMR software incorporates the expectation-maximization, weighted intensity, a priori information (EWA) algorithm used to generate the infarct scar volume, infarct scar percentage, and microvascular obstruction percentage. Here, Segment CMR software segmentation algorithm is updated with semantic segmentation with U-net to achieve and evaluate fully automated or deep learning-based MI quantification. The direct observation of graphs and the number of infarcted and contoured myocardium are two options used to estimate the relationship between deep learning-based MI quantification and medical expert-based results.

Citations (4)

Summary

We haven't generated a summary for this paper yet.