Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
48 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Difficulty in estimating visual information from randomly sampled images (2012.08751v1)

Published 16 Dec 2020 in cs.CV

Abstract: In this paper, we evaluate dimensionality reduction methods in terms of difficulty in estimating visual information on original images from dimensionally reduced ones. Recently, dimensionality reduction has been receiving attention as the process of not only reducing the number of random variables, but also protecting visual information for privacy-preserving machine learning. For such a reason, difficulty in estimating visual information is discussed. In particular, the random sampling method that was proposed for privacy-preserving machine learning, is compared with typical dimensionality reduction methods. In an image classification experiment, the random sampling method is demonstrated not only to have high difficulty, but also to be comparable to other dimensionality reduction methods, while maintaining the property of spatial information invariant.

Summary

We haven't generated a summary for this paper yet.