Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint moments of a characteristic polynomial and its derivative for the circular $β$-ensemble (2012.08618v2)

Published 15 Dec 2020 in math-ph and math.MP

Abstract: The problem of calculating the scaled limit of the joint moments of the characteristic polynomial, and the derivative of the characteristic polynomial, for matrices from the unitary group with Haar measure first arose in studies relating to the Riemann zeta function in the thesis of Hughes. Subsequently, Winn showed that these joint moments can equivalently be written as the moments for the distribution of the trace in the Cauchy unitary ensemble, and furthermore relate to certain hypergeometric functions based on Schur polynomials, which enabled explicit computations. We give a $\beta$-generalisation of these results, where now the role of the Schur polynomials is played by the Jack polynomials. This leads to an explicit evaluation of the scaled moments for all $\beta > 0$, subject to the constraint that a particular parameter therein is equal to a non negative integer. Consideration is also given to the calculation of the moments of the singular statistic $\sum_{j=1}N 1/x_j$ for the Jacobi $\beta$-ensemble.

Summary

We haven't generated a summary for this paper yet.