Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimax Risk and Uniform Convergence Rates for Nonparametric Dyadic Regression (2012.08444v2)

Published 15 Dec 2020 in math.ST, econ.EM, and stat.TH

Abstract: Let $i=1,\ldots,N$ index a simple random sample of units drawn from some large population. For each unit we observe the vector of regressors $X_{i}$ and, for each of the $N\left(N-1\right)$ ordered pairs of units, an outcome $Y_{ij}$. The outcomes $Y_{ij}$ and $Y_{kl}$ are independent if their indices are disjoint, but dependent otherwise (i.e., "dyadically dependent"). Let $W_{ij}=\left(X_{i}',X_{j}'\right)'$; using the sampled data we seek to construct a nonparametric estimate of the mean regression function $g\left(W_{ij}\right)\overset{def}{\equiv}\mathbb{E}\left[\left.Y_{ij}\right|X_{i},X_{j}\right].$ We present two sets of results. First, we calculate lower bounds on the minimax risk for estimating the regression function at (i) a point and (ii) under the infinity norm. Second, we calculate (i) pointwise and (ii) uniform convergence rates for the dyadic analog of the familiar Nadaraya-Watson (NW) kernel regression estimator. We show that the NW kernel regression estimator achieves the optimal rates suggested by our risk bounds when an appropriate bandwidth sequence is chosen. This optimal rate differs from the one available under iid data: the effective sample size is smaller and $d_W=\mathrm{dim}(W_{ij})$ influences the rate differently.

Summary

We haven't generated a summary for this paper yet.