Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Selection of Random Field Evaluation Points in the p-MLQMC Method (2012.08189v3)

Published 15 Dec 2020 in math.NA and cs.NA

Abstract: Engineering problems are often characterized by significant uncertainty in their material parameters. A typical example coming from geotechnical engineering is the slope stability problem where the soil's cohesion is modeled as a random field. An efficient manner to account for this uncertainty is the novel sampling method called p-refined Multilevel Quasi-Monte Carlo (p-MLQMC). The p-MLQMC method uses a hierarchy of p-refined Finite Element meshes combined with a deterministic Quasi-Monte Carlo sampling rule. This combination yields a significant computational cost reduction with respect to classic Multilevel Monte Carlo. However, in previous work, not enough consideration was given how to incorporate the uncertainty, modeled as a random field, in the Finite Element model with the p-MLQMC method. In the present work we investigate how this can be adequately achieved by means of the integration point method. We therefore investigate how the evaluation points of the random field are to be selected in order to obtain a variance reduction over the levels. We consider three different approaches. These approaches will be benchmarked on a slope stability problem in terms of computational runtime. We find that for a given tolerance the Local Nested Approach yields a speedup up to a factor five with respect to the Non-Nested approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.