Papers
Topics
Authors
Recent
2000 character limit reached

GAN Ensemble for Anomaly Detection

Published 14 Dec 2020 in cs.LG and cs.AI | (2012.07988v1)

Abstract: When formulated as an unsupervised learning problem, anomaly detection often requires a model to learn the distribution of normal data. Previous works apply Generative Adversarial Networks (GANs) to anomaly detection tasks and show good performances from these models. Motivated by the observation that GAN ensembles often outperform single GANs in generation tasks, we propose to construct GAN ensembles for anomaly detection. In the proposed method, a group of generators and a group of discriminators are trained together, so every generator gets feedback from multiple discriminators, and vice versa. Compared to a single GAN, a GAN ensemble can better model the distribution of normal data and thus better detect anomalies. Our theoretical analysis of GANs and GAN ensembles explains the role of a GAN discriminator in anomaly detection. In the empirical study, we evaluate ensembles constructed from four types of base models, and the results show that these ensembles clearly outperform single models in a series of tasks of anomaly detection.

Citations (60)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.