Papers
Topics
Authors
Recent
2000 character limit reached

Classification and threshold dynamics of stochastic reaction networks

Published 14 Dec 2020 in math.PR and math.DS | (2012.07954v3)

Abstract: Stochastic reaction networks (SRNs) provide models of many real-world networks. Examples include networks in epidemiology, pharmacology, genetics, ecology, chemistry, and social sciences. Here, we model stochastic reaction networks by continuous time Markov chains (CTMCs) and pay special attention to one-dimensional mass-action SRNs (1-d stoichiometric subspace). We classify all states of the underlying CTMC of 1-d SRNs. In terms of (up to) four parameters, we provide sharp checkable criteria for various dynamical properties (including explosivity, recurrence, ergodicity, and the tail asymptotics of stationary or quasi-stationary distributions) of SRNs in the sense of their underlying CTMCs. As a result, we prove that all 1-d endotactic networks are non-explosive, and positive recurrent with an ergodic stationary distribution with Conley-Maxwell-Poisson (CMP)-like tail, provided the state space of the associated CTMCs consists of closed communicating classes. In particular, we prove the recently proposed positive recurrence conjecture in one dimension: Weakly reversible mass-action SRNs with 1-d stoichiometric subspaces are positive recurrent. The proofs of the main results rely on our recent work on CTMCs with polynomial transition rate functions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.