Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit Formulas for the First Form (q,r)-Dowling Numbers and (q,r)-Whitney-Lah Numbers (2012.07249v1)

Published 14 Dec 2020 in math.CO

Abstract: In this paper, a q-analogue of r-Whitney-Lah numbers, also known as (q,r)-Whitney-Lah number, denoted by $L_{m,r}[n,k]_q$ is defined using the triangular recurrence relation. Several fundamental properties for the q-analogue are established such as vertical and horizontal recurrence relations, horizontal and exponential generating functions. Moreover, an explicit formula for (q,r)-Whitney-Lah number is derived using the concept of q-difference operator, particularly, the q-analogue of Newton's Interpolation Formula (the umbral version of Taylor series). Furthermore, an explicit formula for the first form (q,r)-Dowling numbers is obtained which is expressed in terms of (q,r)-Whitney-Lah numbers and (q,r)-Whitney numbers of the second kind.

Summary

We haven't generated a summary for this paper yet.