Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepObjStyle: Deep Object-based Photo Style Transfer (2012.06498v1)

Published 11 Dec 2020 in cs.CV

Abstract: One of the major challenges of style transfer is the appropriate image features supervision between the output image and the input (style and content) images. An efficient strategy would be to define an object map between the objects of the style and the content images. However, such a mapping is not well established when there are semantic objects of different types and numbers in the style and the content images. It also leads to content mismatch in the style transfer output, which could reduce the visual quality of the results. We propose an object-based style transfer approach, called DeepObjStyle, for the style supervision in the training data-independent framework. DeepObjStyle preserves the semantics of the objects and achieves better style transfer in the challenging scenario when the style and the content images have a mismatch of image features. We also perform style transfer of images containing a word cloud to demonstrate that DeepObjStyle enables an appropriate image features supervision. We validate the results using quantitative comparisons and user studies.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Indra Deep Mastan (13 papers)
  2. Shanmuganathan Raman (63 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.